
Noname manuscript No.
(will be inserted by the editor)

Using Directionality in Mobile Routing

Bow-Nan Cheng · Murat Yuksel · Shivkumar

Kalyanaraman

Received: date / Accepted: date

Abstract The increased usage of directional methods of communications has prompted

research into leveraging directionality in every layer of the network stack. In this paper,

we explore the use of directionality in layer 3 to facilitate routing in highly mobile envi-

ronments. We introduce Mobile Orthogonal Rendezvous Routing Protocol (MORRP)

for mobile ad-hoc networks (MANETs). MORRP is a lightweight, but scalable routing

protocol utilizing directional communications (such as directional antennas or free-

space-optical transceivers) to relax information requirements such as coordinate space

embedding, node localization, and mobility. This relaxation is done by introducing a

novel concept called the directional routing table (DRT) which maps a set-of-IDs to

each interface direction to provide probabilistic routing information based on interface

direction. We show that MORRP achieves connectivity with high probability even in

highly mobile environments while maintaining only probabilistic information about

destinations. Additionally, we compare MORRP with various proactive, reactive, and

position-based routing protocols using single omni-directional interfaces and multiple

directional interfaces and show that MORRP gains over 10-14X additional goodput

vs. traditional protocols and 15-20% additional goodput vs. traditional protocols using

multiple interfaces. MORRP scales well without imposing DHT-like graph structures

A preliminary version of this paper appeared in IEEE International Conference on Mobile
Ad-hoc and Sensor Systems (MASS) 2008. This material is based upon work supported by the
National Science Foundation under Grant Nos. 0627039, 0721452, 0721612 and 0230787. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation

B. Cheng
Rensselaer Polytechnic Institute
ECSE Department
Tel.: 201-563-3875
E-mail: bownan@gmail.com

M. Yuksel
University of Nevada - Reno
ECSE Department

S. Kalyanaraman
IBM India Research Laboratory
Bangalore, India

2

(eg: trees, rings, torus etc). We also show that high connectivity can be achieved without

the need to frequently disseminate node position resulting increased scalability even in

highly mobile environments.

Keywords Mobile Ad Hoc Networks · Directional Antennas · Free Space Optical ·
Routing

1 Introduction

A recent trend in wireless communications has been the desire to leverage directional

forms of communications (e.g. directional smart antennas [14] [13], Free-Space-Optical

transceivers [16] [9], and sector antennas) for more efficient medium reuse, increased

scalability, enhanced security and potential for higher achievable bandwidth. Previ-

ous work in directional antennas focused heavily on measuring network capacity and

medium reuse [14] [15]. In these works, it was shown that with proper tuning, capacity

improvements using directional over omnidirectional antennas are dramatic - even just

8 directional interfaces results in a theoretical capacity gain of 50X.

Additionally, there has been a large push in the free space optical (FSO) community

to use FSO to compliment traditional RF methods [9]. FSO has several attractive

characteristics like (i) dense spatial reuse, (ii) low power usage, (iii) license-free band

of operation, and (iv) relatively high bandwidth compared to RF but suffers from (i) the

need for line of sight (LOS) alignment and (ii) reduced transmission quality in adverse

weather conditions. Yuksel et al. [16] proposed several ways to mitigate these issues by

tessellating low cost FSO transceivers in a spherical fashion and replacing long-haul

point-to-point links with short, multi-hop transmissions.

Given the seemingly large increases in medium reuse and potential for higher band-

width in directional forms of communications, it becomes interesting to investigate

how directionality can be used to complement and even enhance wireless networks in

all layers of the stack. There are several challenges associated with using directionality

in mobile networks. Unlike omnidirectional antennas where neighbor reach depends

almost exclusively on range, nodes using directional antennas need also take into ac-

count the neighbor’s direction and map it to a specific interface in that direction. The

problem is complicated even further as nodes closer to a source seemingly incur more

dynamism (even small movements can affect perceived direction dramatically) while

nodes farther away incur less change.

In this paper, we address these issues and propose utilizing directionality for a

novel purpose: to facilitate layer 3 routing in highly mobile environments without the

need for flooding either in the route dissemination or discovery phase. Most prior

work on leveraging directional antennas in the routing layer focus on adapting routing

protocols to simply utilize directional communications [6][7]. Our work is novel in that

we utilize local directionality as a property to route packets itself. To the authors’

best knowledge, this is the first paper that attempts to use directionality to address

issues with high mobility. Figure 1 illustrates this insight. Let’s assume a node has 8

directional antennas oriented such that they are facing different directions, providing

full coverage. Traditional routing protocols take advantage of the directional antenna

only in sending unicast packets. Broadcast packets such as hello packets, however,

continue to be flooded out each interface to cover the full spread. By leveraging a

node’s local sense of direction, however, an extra degree of diversity is added.

3

A A

Broadcast Unicast

A

Using Local Directionality

x

x + 90o

x + 180o

Traditional Usage of Directional Antennas Using directionality adds diversity

Fig. 1 Using a node’s sense of direction allows for an extra degree of diversity to leverage.

AB C

180o

1. Local directionality is sufficient to
maintain forwarding of a packet on a
straight line

A

D
2. Two sets of orthogonal lines in a plane
intersect with high probability.

Fig. 2 By forwarding out 180 degrees from the angle of receipt, one can effectively maintain
straight line paths in transmitting. In a plane, two sets of orthogonal lines intersect with a
high probability.

Our protocol, Mobile Orthogonal Rendezvous Routing Protocol (MORRP) is based

on two fundamental primitives: a) local directionality is sufficient to maintain forward-

ing of a packet on a straight line, and b) two sets of orthogonal lines in a plane inter-

sect with high probability even in sparse, bounded networks. Figure 2 illustrates these

primitives. Suppose that Node A receives a packet from Node B from the transceiver

direction shown. By sending the packet out the transceiver 180◦ from the angle of re-

ceipt to Node C, Node A can effectively maintain a relatively straight line transmission

path. In a plane, two sets of orthogonal lines originating at separate points have a high

probability of intersect.

Cheng et al. [1] showed that in static wireless mesh networks, by forwarding packets

to nodes intersected by a pair of orthogonal lines originating from a source and destina-

tion, one can successfully route packets to a high degree of connectivity (98%) without

the need for coordinate space. Furthermore, it was shown that forwarding using this

method state-scales to O(N3/2) with the states spread evenly throughout the network,

while incurring a path stretch vs. shortest path of only 1.2.

4

The protocol proposed in [1] relies on nodes to periodically send out announcement

packets proactively in orthogonal directions with each node along the path to store the

state in a routing table. When a node desires to send to a destination, it sends out

a route request (RREQ) packet reactively in orthogonal directions. When the RREQ

packets intersect a node that has state information about a destination, that node

becomes the rendezvous node/point and a route reply (RREP) packet is sent back

to the source. What results is a two-phased path from source to rendezvous node

to destination. Unfortunately, the proposed protocol fails under even slight mobility

because straight-line paths and rigid “destination - next-hop” routing tables are hard

to maintain in the presence of node dynamism.

MORRP facilitates high mobility by abstracting the concept of rendezvous points

to rendezvous regions and forwards packets probabilistically based on which direction

a destination or rendezvous node is most likely found. These directions shift accord-

ingly to a node’s local velocity. For example, if a source node is moving north, a node

originally east of the source will seem to be moving south.

D’

S
F

C

G

E

J

K

L
M

A

B

I
H

R

D

R’

R: Near Field DRT
Region of Influence

Original Path

Original Path

Original
Direction ()

New
Direction
()

O P

S

N

R

Q S: Near Field DRT
Region of Influence

D: Near Field DRT
Region of Influence

Mobile Orthogonal Rendezvous
Routing Protocol

Basic Example

Fig. 3 Basic MORRP Example: Source sends to rendezvous node R found in region illustrated
which in turn sends to destination D found in the DRT region given.

Figure 3 illustrates a basic example. Suppose source S wants to send packets to

destination D and through announcement and route request (RREQ) packets, the path

“Original Path” is established between S and D with node R as the rendezvous node.

After some time, node R has moved to R’ and node D has moved to D’. With infrequent

updates in a mobile environment, node R wishes to maintain a general direction to node

D based solely on local information (its own mobility pattern) and adjusts its direction

of sending to D from angle α1 to α2. All nodes maintain a “field of influence” where

each node knows the relative direction to all nodes in its region. The data packets S

sends to D will traverse the original path, “gravitating” toward R’ once it hits R’s field

5

of influence. Then, it will be sent in the modified direction of D until it hits D’s field

of influence and ”gravitates’ toward the destination.

MORRP routes packets using directionality in highly mobile environments by 1)

shifting destination node directions based on a node’s local velocity and 2) increasing

probability of finding nodes by introducing “fields of influence”. All of this is done

through a novel replacement to routing tables we formulate called the directional rout-

ing table (DRT).

Dest
ID

Next
Hop

Dest
ID

Next
Hop

Beam
ID

Beam
ID

1
1
3
:
3

Dest IDs
(% of Certainty)

B
C
D
:
Z

B
B
Z
:
Z

B
C
D
:
Z

B
B
Z
:
Z

B(90%), C(30%)
.
Z(90%), D(40%)
.

1
2
3
4

B
C

Z
D

A
4

1
2

3

RT w/ Beam ID Directional RT (DRT)Routing Table

ID ID ID set of IDs Set of IDs set of IDs

Routing Tables
viewed from Node A

Fig. 4 Directional Routing Tables (DRTs) map a direction to a set-of-IDs stored in bloom
filters

The concept behind DRTs is simple: instead of maintaining destination IDs to

next-hop IDs, we map a probabilistic set-of-IDs to each interface direction as shown

in figure 4. The set-of-IDs are stored in bloom filters that are aggregated and sent to

neighbors who merge them with the set-of-IDs associated with the interface of receipt.

The information in the filter becomes less useful as we progress in time and space and

thus we decay (remove bits) from each bloom filter before sending it to its neighbors

to capture this effect. Closer nodes have “more” information because the rate at which

they are being updated by the source node is higher. Because DRTs only maintain

information on each interface rather than on specific routes in a network, it adds more

robustness to mobility as it provides several alternative paths for reaching a destination.

In short, any next-hop in a particular direction can take the packet forward. Naturally,

the closer a packet gets to a destination node, the information intermediate nodes have

about the location of the destination increases. For destinations too far for the source

to have any information about the location, MORRP relies on route request (RREQ)

packets sent in orthogonal directions to rendezvous with state information maintained

by each node along an announcement path also disseminated in orthogonal directions.

This lightweight method of information dissemination ensures low control overhead

from being flooded network-wide.

Key contributions of MORRP include:

– Using directionality to solve the issues caused by high mobility in MANETs

- Using only local information, any node is able to more efficiently “guess” the di-

rection of a destination and forward probabilistically.

– The Directional Routing Table - A replacement for traditional routing tables

based on purely probabilistic routing. DRTs map a set-of-IDs to a specific direction

which eliminates the need to maintain exact routing information about nodes in a

network while lessening the frequency of route dissemination.

6

– Routing Based on Probabilistic Hints - Traditional routing protocols have a

hard limit on route expiration. With probabilistic routing, routing information is

decayed with time and becomes less and less accurate. Below a certain threshold,

the information becomes insignificant.

In comparing with several proactive, reactive, and position-based routing protocols,

MORRP shows high data delivery (93%+), low packet overhead, and over 10-14X

goodput gains vs. traditional routing protocols and 15-20% goodput gains vs. tradi-

tional routing protocols modified with multiple directional interfaces in highly mobile

(30m/s) environments. These gains come from many key design factors:

– Weak state information and probabilistic routing - MORRP does not main-

tain complete paths and is thus more flexible to forward packets in mobile environ-

ments.

– Local update of weak state information - Adjusting the “general direction”

of a destination node based on one’s local velocity “takes a packet forward” even

with infrequent location updates.

– Field of influence - Enlarging the intersection area results in a greater probability

of finding a path in highly mobile environments even with infrequent updates.

– Leveraging local direction information - Limited flooding is curtailed by us-

ing local directionality to forward in straight lines and rely on intersections of

announcement and route request packets to “find” potential paths. This results in

“freeing up” the medium for data. This is especially important because MORRP

is a hybrid proactive/reactive protocol.

The rest of the paper is organized as follows: Section 2 and 3 outline the concept of

MORRP including a detailed explanation of DRTs and several decaying strategies as

well as how route information would be disseminated and maintained. Section 4 gives

a basic numerical analysis on path intersection probability while section 5 gives some

simulation performance evaluations. Finally, section refsec:conclusion presents some

thoughts on future work and concludes the paper.

2 The Directional Routing Table

One of the underlying mechanisms behind MORRP’s probabilistic forwarding strategy

is the directional routing table (DRT), a simplified method of storing route information

by leveraging directional communications methods. Unlike traditional routing tables

which map destination-IDs to next hop IDs, DRTs map a set of IDs to a specific

interface direction. In other words, all the nodes covered by the transmission sector of

a specific antenna are included in the entry for that interface in the DRT. The number

of entries in the DRT remains constant based on the number of interfaces and does not

grow even as the number of nodes in the network grows. This is done through bloom

filters.

The concept of using bloom filters in probabilistic routing schemes is not new. Acer

et al. [8] and Kumar et al. [20] have suggested novel, decentralized, and scalable ways

on how information can be disseminated in various types of networks using bloom

filters. Bloom filters are space efficient probabilistic data structures that are used to

test whether an element is a member of a set. Given an array of bits A (the bloom filter)

initialized to all 0 and a fixed number (k) of hash functions (h1(.), ...hk(.)), elements (x)

7

are inserted into the bloom filter by evaluating the element in each hash function and

mapping the resultant locations in the array to one (hi(x) = 1, i = 1, 2, ..., k). Lookups

are done in the same way in that if the positions in the bit array corresponding to the

hashes of an element all equal 1, then the element is a member of the set.

Kumar et al. [20] introduced exponential decay bloom filters (EDBF), a data struc-

ture based on the traditional bloom filter concept. Instead of testing whether an element

is part of a set or not (absolute information), EDBFs count the number of 1’s in the

bit array corresponding to the element hash in lookup (θx = |{i|A[hi(x)] = 1, i =

1, 2, ..., k}|). The fraction of bits set to 1 over the number of hash functions can be

used to interpret the certainty of an element being in the set. Bits are “dropped” (de-

cayed) using various strategies. In this paper, we apply the concept of EDBFs to store

a probabilistic set-of-IDs corresponding to neighbor nodes a sector antenna covers in

a MANET. We generalize the term to decaying bloom filter (DBF) as there are many

ways to decay bloom filters.

Figure 4 outlines the structure for the DRT. In short, a set-of-IDs stored in a

decaying bloom filter is mapped to each specific interface direction. To find the certainty

of reaching a node by sending out a specific interface, the DBF associated with the

interface is selected and the destination node ID is sent through each hash function. By

counting the number of bits set to “1” in the locations where the hashes land, the level

of certainty of reaching a destination node by sending out that interface is obtained.

As time goes on and without frequent updates, the level of certainty decreases. To

facilitate this idea, we decrease the level of certainty by “decaying” bits in the bloom

filter (i.e. changing bits in the DBF from 1 to 0). Decaying methods can be broken

up into two main thrusts: intra-node decay which handles how bits are removed to

simulate that as time goes on, there is less certainty about information, and inter-node

decay which dictate how bits are removed as information is passed from node to node,

simulating that nodes farther away know less about a node than nodes closer to the

node. In the following subsections, we detail each method.

2.1 Intra-Node Decay

2.1.1 Time Decay

Current routing strategies employ hard timeouts for routing entries, updating routing

entries periodically through route dissemination or route discovery. While effective

for low mobility situations, high mobility situations can cause routes to become stale

quickly if the interval between route updates is not decreased. As a result, maintaining

accurate routing entries network-wide poses a huge problem as it incurs a much higher

overhead. MORRP attempts to mitigate this issue by decaying the likelihood a neighbor

or destination is in the direction covered by a specific interface as time moves on. In

stationary environments, the probability of a neighbor being in a specific region decays

at a constant rate (bits from the bloom filter are removed randomly at a constant rate).

In mobile environments, we employ a different strategy to decay neighbor location

probabilities. Figure 5 illustrates the basis for our formulation of a simple time decay

heuristic in mobile scenarios. Assuming all things constant, as a node moves away from

its original position, the probability of neighbors in the direction of movement should

decay slower than the nodes directly opposite of the direction of movement. In short,

the velocity with which each interface perceives itself to be moving at is dependent on

8

S

Vx – Velocity in Direction
of mobility

V() – Velocity as seen by
transceiver oriented
at angle

– Angle from direction of
mobilityv() = vxcos()

Vx

Fig. 5 Each interface has a different relative notion of how fast a specific node is traveling.

the angle the transceiver is from the direction of movement. As we wish to split the

intra-node decay between time decay and spread decay, we will only use half the bits

in each bloom filter in our calculations.

We formulate our time decay heuristic as follows:

Step 1: Suppose vx is the speed a node is moving in the “x” direction and φ is the

angle a specific interface is from the direction of movement. We define the velocity as

seen by a specific transceiver vφ as:

v(φ) = vx cos(φ) (1)

Step 2: If we let R be the range of a transceiver, a node traveling directly away

from a specific direction at velocity vx would be out of the transmission region in R
vx

seconds. As a result, we specify that all bits of the bloom filter in a specific interface

direction must be decayed in R
v(φ)

seconds.

Step 3: Assuming there are k bits of ones in the bloom filter for a specific interface

and half of those k bits (k
2) are reserved for time decay, we linearly decay the number

of bits in each bloom filter for each interface with respect to time and velocity. The

number of bits to remove per time interval (δt) is:

δt =
ktDtc

2
− ktv(φ)

2R

δt =
kt

2

(
Dtc − vx cos(φ)

R

)
(2)

Where k/2 is the number of bits reserved for time decay (1
2 the total bits set to 1 in

the bloom filter), t is the time, Dtc is the time decay factor in the stationary case (Dtc

fraction of bits removed per second in the stationary case), R is the transceiver range,

vx is the velocity in a specific direction, and φ is the angle from the current interface

to the direction of movement. These bits are removed and discarded.

2.1.2 Spread Decay

In a mobile environment with directional communications, the probability a neighbor

will be in a certain transmission region/sector is stretched over time. As time progresses,

the area a neighbor is possibly located, increases. Figure 6a illustrates this concept.

9

S

Region 2

Region 1 Region 3

a1

S

a1

a2 a2

S
Node Movement

Direction (+X)
After Movement

Fig. 6 Each interface/transceiver has a specific coverage region. As a node moves in one
direction, the spread overflows to regions covered by neighboring interfaces.

Suppose a neighbor announces its position to be within region 2. Without knowing

what direction and velocity the neighbor is traveling at, as time progresses, there is a

greater possibility that the neighbor will be in region 1 and region 3 and a lessened

probability that the neighbor will be in region 2. We say that as time goes on, the

“spread” for the area the neighbor is in, is increased.

In much the same way, a mobile node traversing in a certain direction will need

a greater spread to cover the same area in the direction it is traveling in. Figure 6b

illustrates this. As a node trying to cover range θ1 moves in the “+x” direction, it will

need a greater spread, θ2 to cover the same transmission region in the direction it is

traveling while at the same time, a smaller spread, θ3 to cover the same region in the

direction away from the direction it is traveling. Each direction other than the direction

the node is traveling in and the direction directly opposite has varied stretch in between

these two extremes based on the angle from the direction the node is traveling.

Unlike in our time decay heuristic formulation, bits removed from the bloom filter

are not discarded but instead, relocated to the surrounding directions. The inherent

nature of bloom filters allows us to move bits in the DBF associated with a specific

interface, to surrounding DBFs, keeping the bits set to 1 in the same hash locations.

Due to space constraints, we do not go into details regarding spread strategies. For

our simulations, we assume a simple heuristic that whatever bits were affected by the
vx cos(φ)

R term in equation 2 are affected in the opposite way for spread decay (ie: if

the bits were removed, they are spread). When there is no mobility, there is no spread

decay. It is important to note the duality of time and spread decay: A neighbor in the

direction of travel will incur less time decay but at the same time, more spread decay.

2.2 Inter-Node Decay

The general idea behind decaying the information transferred between nodes is that

nodes “closer” to a specific source will most likely have more accurate information

about the location of the source than nodes “farther” away. Nodes that are much

farther away from the source will have so little information on the source that it will

be indistinguishable from “noise”. Figure 7 illustrates this principle: Node A is a 1-hop

10

S A B C D

FG

H E

Strong Info
Med Info Low Info Noise

Inter - Node Decay

No Info

Fig. 7 Neighbor information is decayed going farther from the source.

neighbor of Node B. Node B aggregates its information about all its neighbors and

decays this information before sending it to node C. Node C does the same thing with

all its neighbors and what results is less and less accurate information about any node

in a network depending on the distance that node is from the source.

2.2.1 Exponential Distance Decay

Updates are easily created by aggregating the DBFs associated with each interface

in the DRT. We follow much of the same aggregation techniques presented in [20] in

decaying bits exponentially with number of hops. Exploration of various distance decay

methods are beyond the scope of this paper.

Algorithm 1 DRT Updates

1: // Create Local DBF (given local ID x)
2: for all i ∈ {1, ..., k} do
3: Set bits A[hi(x)] to 1.
4: end for
5: // Create Update (w/ decay function fb(n))
6: // Copy all the bits from the local DBF A into update U
7: U ← A;
8: // Decay info received from neighbors stored in DRT
9: for all i ∈ Interface Direction do

10: for all r ∈ {1, ...,m} do
11: if Ai[r] == 1 then
12: U [r]← 1, with prob. fb(n + 1)/fb(n);
13: end if
14: end for
15: end for
16: Return U ;

As algorithm 1 shows, the local node ID is first hashed into a DBF U . Then, each

of the DBFs associated with each interface is bitwise decayed according the decaying

function fb(r) and bitwise OR-ed with U . U is then compressed using bloom filter

compression [21] and broadcasted out all interfaces to all neighbors.

Upon receipt of the aggregated and decayed DBF from a neighbor, a node will take

the max number of bits counted for each entry and bit-wise OR the received DBF with

11

the DBF associated with the interface it receive the packet for the max number of bits

for that entry. The reason we cannot simply bit-wise OR the entry with the received

DBF is because with increased number of hash functions, probabilities will be biased

toward directions with more neighbors since there is higher probability that even if

neighbors have same amount of information about a specific node, the bits associated

with that information will be more spread out.

Dissemination, which occurs periodically, only takes place between 1-hop neighbor

nodes and requires no route/path maintenance. A common assumption in wireless

routing protocols is neighbor discovery (each node knows its 1 hop neighbors) and

this is usually achieved through periodically broadcasting hello packets to all nodes

within transmission range. By piggy-backing dissemination information on these hello

packets, we can therefore disseminate DRT information to our 1 hop neighbors without

additional overhead.

2.3 Design Variables and Considerations

There are several factors to consider in designing routing algorithms based on DRTs.

Table 1 lists several parameters that affect successful packet delivery using DRTs.

Exploration of all the variables is beyond the scope of this paper, however, in section

5, we examine how varying some of the constraints affect routing in MORRP.

Table 1 Parameters Affecting Successful Packet Delivery

Network Density Average number of neighbors
Num of Interfaces (φ) The number of interfaces per node
Time Decay Factor (Dt) Fraction of bits in bloom filter dropped

per second per time interval Di)
Time Decay Interval (Di) The time interval to do decaying
Dist. Decay Factor (Dd) Fraction of bits in bloom filter to

drop per hop
Near/Far-Field Threshold The number of bits found for it to be considered
(thresh / ff thresh) a positive result in searching in NF/FF DRT
Spread Ratio (s ratio) The ratio between bits used for spread decay

and bits used for time decay
Bloom Filter Size (m) The number of bits in each bloom filter
of Hash Funcs (k) The number of hash functions

3 Mobile Orthogonal Rendezvous Routing Protocol

MORRP relies heavily on DRTs to provide probabilistic routes from source to destina-

tion. Because information about nodes farther away tend not to need to be refreshed as

often as nodes closer to a source [12], MORRP is broken into two major arenas of oper-

ation, each with a separate DRT updated at different intervals: near field and far field.

The near field handles direction changes and information about 2-3 hop “neighbors”

while the far field handles everything beyond the near field’s “region of influence”.

Near field operation including information dissemination is fairly straight forward and

12

follows what is described in section 2.1. In this section, we will focus mainly on reaching

nodes that are not in the immediate vicinity of the source (i.e. nodes in the far-field).

3.1 Assumptions

MORRP relaxes many of the assumptions made by position-based routing protocols

(no need for location discovery and coordinate space embedding) while still providing

connectivity even in highly mobile environments. To do so, MORRP assumes 3 givens:

– Neighbor to Direction Assignment - Any given node will know (i) its 1-hop neighbors

and (ii) the given direction/interface to send packets to reach this neighbor.

– Local Sense of Direction - Each node must have its own local perception of direc-

tion with antennas/transceivers oriented in such a way as to be able to consistently

send out orthogonal directions. This can easily be done by selecting any of the

transceivers as the “local North” and assigning angles to the others based on that

selected transceiver. Nodes must also be capable of communicating directionally

over their transceivers. This can be done by various hardware including directional

and smart antennas [13], and FSO transceivers [16]. FSO transceivers are a partic-

ular interest due to their fine-grained transmit angle and ability for several dozen

to be tesselated together oriented in several directions on a single node [16].

– RREQ and RREP send/receive time is negligible - We assume that the time required

to send a RREQ and receive a RREP (if one is found) is negligible compared to

node movement. In otherwords, if a path exists, a node receiving a RREQ should

be able to simply record its “previous hop” and “source” so that RREP packets

can retrace the route back to the source easily.

3.2 Near Field Operation

Nodes within two or three hops (depending on distance decay factor) of a specific

source are considered “near-field” nodes because they have some information about

the position of the source relative to itself. This information becomes less and less

with increasing distance from the source. Near-field DRTs are maintained periodically

as described in section 2.1 and nodes close to a specific source should have adequate

information about the position of a destination in the near-field even if they’re not an

immediate neighbor. Sending to a node in the near-field involves querying each entry

in the DRT to return the number of bits in the DBF associated with a specific node ID.

The node is said to “have information” about a specific node if the maximum returned

bits is greater than a set threshold number of bits (thresh). The threshold number

of bits is anywhere between 1 and k where k is the number of hash functions. A low

threshold results in more false positives. The interface with the maximum number of

bits associated with a destination node ID and above the threshold bits is then selected

as the interface to send the packet and a random neighbor in that direction is chosen

to be the forwarder. If there is a tie in the number of bits found for a specific node ID,

one is randomly chosen. The process is repeated until the destination is reached.

Additionally, because one of the basic assumptions of MORRP is neighbor discovery

in which each node knows its 1 hop neighbors and the interface associated with that

interface, if a source wishes to send to its neighbor, it can do so by merely selecting

13

the interface the neighbor resides in and send out that interface. Sending to nodes

not within 1 hop from the source but within near-field operation requires querying the

near-field DRT for a specific destination.

3.3 Far Field Operation

Because near-field DRTs are decayed between nodes at a substantial decay rate, in

general, nodes past three hops from a specific source will have little to no information

about the source. To forward packets to nodes where there is little to no information

about position (Far-field operation), MORRP sends route request (RREQ) packets in

orthogonal directions (randomly choosing a neighbor in each orthogonal direction) and

when one of these RREQ packets intercepts the path of the destination’s announcement

packets (also sent in orthogonal directions at periodic intervals), a RREP packet is

sent back to the source. MORRP stores only weak-state[8] at each hop and because of

infrequent updates, the far-field DRT is decayed at a slower rate than the near-field

DRT. The protocol itself consists of both a proactive and reactive element and the next

sections will detail each element and explain the tradeoffs and design considerations

associated with each part.

3.3.1 Proactive Element

MORRP: Transmission Procedure
D

120o

North1

1 1

1

2RREQ Path 2

A
RREP3 3

B C
Data Path4 4 4

Fig. 8 1: MORRP Announcements used to generate rendezvous node-to-destination paths
2-3: MORRP RREQ and RREP Packets to generate source-to-rendezvous node paths 4: Data
path after route generation

In order for a source and destination to agree upon a rendezvous node, pre-established

“routes” from the rendezvous node to the destination must be in place. Because each

node has merely a local sense of direction, making no assumption on position and ori-

entation of other nodes in the network, it can only make forwarding decisions based

on its own neighbor list. As mobility is increased however, routes become stale more

quickly. Upon a set interval, each node sends MORRP announcement packets to its

14

neighbors in orthogonal directions. When those neighbors receive these MORRP an-

nouncement packets, it hashes the ID of the source of the packet into the far-field DRT

entry corresponding to the interface/direction it received the announcement packet

and stores/updates the shortest number of hops associated with this announcement

sequence number to the announcement source in a “hop count” table if the sequence

number of the packet is greater or the hop count is less than that recorded in the table

(better or newer path). Note that this “hop count” table is not maintained in any

traditional sense and only updated once we have routes. The packet is then forwarded

out the interface exactly opposite in direction from the interface it received the packet.

If no neighbor is found in the opposite interface to send the MORRP announcement,

ORRP’s multiplier angle method (MAM) is employed to attempt to maintain straight

paths or forward along the perimeter as much as possible. Discussion of MAM is be-

yond the scope of this paper. Algorithms 2 and 3 detail the basic procedure for sending,

forwarding, and receiving MORRP announcements.

Algorithm 2 Send/Forward MORRP Announcement

ForwardAnnouncementPacket(p)

1: // Check if we are the source - forward opposite if not
2: if p→ Src = ID then
3: // We are the source, forward orthogonally
4: // Get interface ID of local north
5: j ← GetLocalNorthIntID
6: α← NumInterfaces
7: // Send out orthogonal directions
8: for i = 1, i ≤ 4, i++ do
9: Φ←GetRandomNeighbor(j)

10: // Send to neighbor
11: send(Φ)
12: j ← ((j + α/4)%α)
13: end for
14: else
15: // We are forwarding - only forward opposite
16: // Get received interface ID
17: j ← (p→ Recv Int Id)
18: // Get opposite interface j ← ((j + α/2)%α)
19: Φ←GetRandomNeighbor(j)
20: // Send to Neighbor
21: send(Φ)
22: end if

The entries in the far-field DRT are decayed in the same way as the near-field DRT

with intra-node decay methods described in section 2 used. In this way, even if nodes are

moving, they can maintain a general sense of direction for any source they receive an

announcement packet from. Time decaying methods ensure that positioning of nodes

become less and less accurate with time and eventually, the information a specific node

has about another node becomes negligible if not updated. Unlike the near-field DRT,

however, far-field DRT is not shared with neighbors so inter-node decay is not used.

This is to minimize indirection confusion.

15

Algorithm 3 Receive MORRP Announcement

RecvAnnouncementPacket(p)

1: psrc ← (p→ Src)
2: pint ← (p→ Recv Int Id)
3: dbf ← GetDBFfromFarFieldDRTInterface(pint)
4: // Hash Announcement source (psrc) into Far-Field DRT associated with received interface
5: for all i ∈ {1, ..., k} do
6: Set bits dbf [hi(psrc)] to 1.
7: end for
8: // Get entry from hop-count table, if missing, create one
9: hc← GetHCEntry(psrc)

10: if hc = null then
11: // There’s no entry back to announcement source, create one
12: hc← CreateHCEntry(psrc)
13: end if
14: // Update hop count entry if its a new announcement or if hop count smaller
15: if (hcseqnum < pseqnum) OR (hcseqnum = pseqnum AND hchops < phops) then
16: hc← UpdateHCEntry(p)
17: end if
18: if phops ≥ TTL then
19: drop(p)
20: else
21: ForwardAnnouncementPacket(p)
22: end if

3.3.2 Reactive Element

In order to build the path from source to rendezvous node, an on-demand, reactive

element to MORRP is necessary. When a node wishes to send packets to an destination

that is not within its immediate neighbor table or near-field DRT, it creates an entry

in a simple destination-rendezvous node table and sends out a route request packet

(RREQ) in all four of its orthogonal directions. Due to the fact that far-field DRTs

only track nodes that send MORRP announcements or RREQ packets along the line,

the destination-rendezvous table keeps track of which rendezvous nodes to forward to

for a specific destination. Until a RREP is found, this entry is considered unusable.

Algorithm 4 outlines how MORRP RREQ packets are sent and forwarded.

When a neighbor node receives this RREQ packet, it hashes the node ID of the

source into its far-field DRT and forwards the packet in the opposite direction utilizing

MAM. Because one of the assumptions we made is that RREQ and RREP send and

receive times are negligible compared to node movement, we need to add a short-

timeout reverse path to the source so RREP packets can be sent back quickly. A

simple destination-nexthop routing table with fast entry expiry times is used for this

reverse-route back to the source. Algorithm 5 shows how MORRP RREQ packets are

processed upon receipt.

In a 2-D Euclidian plane, by sending a RREQ packet in all 4 of its orthogonal

directions, it is highly likely to encounter a node that has a path to the destination.

When a node with a path to the destination (destination is either in neighbor table

or destination ID is above threshold in near or far-field DRTs) receives the RREQ, it

sends a RREP packet back the way the RREQ came. Because each node along the path

stored a reverse route to the source and we assume that nodes have not moved much

in the process of the RREQ being sent, it is able to forward the RREP back efficiently.

Finally, when the source receives the RREP, it hashes the rendezvous node’s ID into its

16

Algorithm 4 Send/Forward MORRP Route Request

ForwardRREQPacket(p)

1: // Check if we are the source - forward opposite if not
2: if p→ Src = ID then
3: // We are the source, forward orthogonally
4: // Get interface ID of local north
5: j ← GetLocalNorthIntID
6: α← NumInterfaces
7: // Send out orthogonal directions
8: for i = 1, i ≤ 4, i++ do
9: Φ←GetRandomNeighbor(j)

10: // Send to neighbor
11: send(Φ)
12: j ← ((j + α/4)%α)
13: end for
14: // Create an entry in the Destination-Rendezvous table
15: dre← CreateDREntry(psrc)
16: else
17: // We are forwarding - only forward opposite
18: // Get received interface ID
19: j ← (p→ Recv Int Id)
20: // Get opposite interface j ← ((j + α/2)%α)
21: Φ←GetRandomNeighbor(j)
22: // Send to Neighbor
23: send(Φ)
24: end if

far-field DRT and updates the destination-rendezvous table with the rendezvous node

for a specific destination and “activates” that entry.

Algorithms 7 and 8 detail the send, forward, and receive process for MORRP RREP

packets.

3.3.3 Data Delivery

For data delivery, if the packet is at the source, first the neighbor list and near-field

DRT is queried for the destination. If destination is not found in these two tables, then

the far-field DRT is checked to see if the number of bits associated with the destination

hash is above the threshold. If destination is still not found in the far-field DRT, then

the destination-rendezvous table is queried to see if there is a rendezvous node we need

to send to. If it is found, then the far-field DRT is queried for the rendezvous node

ID. If after all these steps the destination is unreachable, then a RREQ is sent out in

orthogonal directions.

For forwarding packets, a similar approach is taken in that first the neighbor list

and near-field DRT is checked for the rendezvous node if its present in the packet

header and if not, the destination node. If it is not found in either, the far-field DRT

is checked. If it is not found in any of the tables, the packet is simply forwarded to the

opposite direction of receipt (the antenna exactly 180◦ from the receiving antenna).

Algorithms 9-12 depict this process.

17

Algorithm 5 Receive MORRP Route Request

RecvRREQPacket(p)

1: psrc ← (p→ Src)
2: psearch id ← (p→ Search ID)
3: pint ← (p→ Recv Int Id)
4: dbf ← GetDBFfromFarFieldDRTInterface(pint)
5: // Hash RREQ source (psrc) into Far-Field DRT associated with received interface
6: for all i ∈ {1, ..., k} do
7: Set bits dbf [hi(psrc)] to 1.
8: end for
9: // Create an entry for the reverse route for RREP

10: rt← GetRTEntry(psrc)
11: if rt = null then
12: // There’s no entry back to RREQ source, create one
13: rt← CreateRTEntry(psrc)
14: end if
15: // Update reverser route entry if its a new RREQ or if hop count smaller
16: if (rtseqnum < pseqnum) OR (rtseqnum = pseqnum AND rthops < phops) then
17: rt← UpdateRTEntry(p)
18: end if
19: // Get entry from hop-count table, if missing, create one
20: hc← GetHCEntry(psrc)
21: if hc = null then
22: // There’s no entry back to RREQ source, create one
23: hc← CreateHCEntry(psrc)
24: end if
25: // Update hop count entry if its a new RREQ or if hop count smaller
26: if (hcseqnum < pseqnum) OR (hcseqnum = pseqnum AND hchops < phops) then
27: hc← UpdateHCEntry(p)
28: end if
29: // Look to see if we can send out a Route Reply
30: RREQCheckRoute(p)

Algorithm 6 Search Destination Route Check

RREQCheckRoute(p)

1: if psearch id = ID then
2: // I’m what the source is looking for
3: num hops← 0
4: SendRREPPacket(p, num hops)
5: else if psearch id ∈ NeighborList then
6: // RREQ search ID is my 1 hop neighbor:
7: num hops← 1
8: SendRREPPacket(p, num hops)
9: else if psearch id ∈ NearF ieldDRT then

10: // RREQ search ID is my Near Field DRT:
11: num hops← 2
12: SendRREPPacket(p, num hops)
13: else if psearch id ∈ FarF ieldDRT then
14: // RREQ search ID is my Far Field DRT:
15: hc← GetHCEntry(psrc)
16: SendRREPPacket(p, hchops)
17: else
18: if phops ≥ TTL then
19: drop(p)
20: else
21: ForwardRREQPacket(p)
22: end if
23: end if

18

Algorithm 7 Send/Forward MORRP Route Reply

ForwardRREPPacket(p)

1: // Search for path back to RREQ source
2: rt←GetRTEntry(pdest)
3: // Send to next hop
4: send(rtnexthop)

Algorithm 8 Receive MORRP Route Reply

1: // Take care of reverse route to rendezvous node
2: psrc ← (p→ Src)
3: psearch id ← (p→ Search ID)
4: pint ← (p→ Recv Int Id)
5: dbf ← GetDBFfromFarFieldDRTInterface(pint)
6: // Hash RREQ source (psrc) into Far-Field DRT associated with received interface
7: for all i ∈ {1, ..., k} do
8: Set bits dbf [hi(psrc)] to 1.
9: end for

10: // Create an entry for the reverse route to rendezvous node
11: rt← GetRTEntry(psrc)
12: if rt = null then
13: // There’s no entry back to RREQ source, create one
14: rt← CreateRTEntry(psrc)
15: end if
16: // Update reverse route entry if its a new RREP or if hop count smaller
17: if (rtseqnum < pseqnum) OR (rtseqnum = pseqnum AND rthops < phops) then
18: rt← UpdateRTEntry(p)
19: end if
20: // Get entry from hop-count table, if missing, create one
21: hc← GetHCEntry(psrc)
22: if hc = null then
23: // There’s no entry back to RREQ source, create one
24: hc← CreateHCEntry(psrc)
25: end if
26: // Update hop count entry if its a new RREQ or if hop count smaller
27: if (hcseqnum < pseqnum) OR (hcseqnum = pseqnum AND hchops < phops) then
28: hc← UpdateHCEntry(p)
29: end if
30: // Process RREP Packet
31: if pdest = ID then
32: // We are the source of the RREQ/Dest of RREP
33: // Find rendezvous table entry
34: rne← GetRTEntry(psrc)
35: rnerend node ← psrc

36: // Send all buffered packets for this destination
37: SendBufferedData()
38: else
39: // We are NOT the source of the RREQ/Dest of RREP
40: ForwardRREPPacket(p)
41: end if
42: SendBufferedData()

19

Algorithm 9 MORRP Data Delivery

ForwardData(p)

1: if pdest ∈ NeighborList then
2: // Destination is my 1 hop neighbor:
3: SendData(p, next hop)
4: else if pdest ∈ NearF ieldDRT then
5: // Destination is my Near Field DRT:
6: j ←GetInterfaceIDfromNFDRT()
7: Φ←GetRandomNeighbor(j)
8: prend node ← null
9: SendData(p, Φ)

10: else
11: if psrc = ID then
12: // I’m the source
13: ForwardDataSrc(p)
14: else
15: // I’m just a forwarder
16: if prend node �= NULL then
17: // data packet has rendezvous node state set in packet header
18: ForwardDataWithRendezvous(p)
19: else
20: // data packet has no rendezvous node
21: ForwardDataNoRendezvous(p)
22: end if
23: end if
24: end if

4 Numerical Analysis

In ORRP, a path is established when a RREQ and announcement packet intersect at

a rendezvous node. The probably of intersection depends on a point and determines

reachability. With MORRP, because nodes are constantly moving, the probability that

a RREQ will intercept a node that originally contained announcement information

about a destination becomes increasingly slim with time. We say that the information

is “diffused” over space with time. It is therefore interesting to gain insight on the

probability of even finding a rendezvous node in a mobile environment by sending out

RREQ and announcement packets in orthogonal directions.

Figure 9 gives an illustration of our analysis. Details are left out due to space

constraints. In short, assuming a source S wanting to send to a destination D, if the

transmission radiuses of the nodes are the green/smaller bands, we say that with a set

mobility speed, the maximum an announcement packet path can deviate from the line

is represented by the grey/larger bands. The intersection formed by the smaller green

bands (area B) represent the area of nodes that would have have received the RREQ

and the announcement packets. Additionally, the intersection formed by the larger grey

band and green band originating from the source represents the area of nodes where

nodes originally along the announcement path would have traveled (area A).

Using Matlab, we iterate through all possible nodes in a network and all possible

source and destination orientations and generate the intersection parallelograms. Then,

we count the number of nodes within area A and divide by area B to get the probability

that sending a RREQ will intercept an announcement given a set mobility speed,

transmission radius, and time after announcement sent. In our numerical analysis, we

tried to mimic our NS simulations so we normalized the 250m transmission radius

20

Algorithm 10 Data Delivery - Packet Source

ForwardDataSrc(p)

1: if pdest ∈ FarF ieldDRT then
2: // Destination is my Far Field DRT:
3: j ←GetInterfaceIDfromFFDRT()
4: Φ←GetRandomNeighbor(j)
5: prend node ← null
6: SendData(p, Φ)
7: else if pdest � DestRendTable then
8: // Destination not in Dest-Rendezvous Table
9: BufferData(p)

10: ForwardRREQPacket(p)
11: else
12: drerend node ← GetRendNode(pdest)
13: if drerend node �= null then
14: if drerend node ∈ NeighborList then
15: // Rendezvous node is my 1 hop neighbor:
16: SendData(p, drerend node)
17: else if drerend node ∈ NearF ieldDRT then
18: // Rendezvous node is my Near Field DRT:
19: j ←GetInterfaceIDfromNFDRT()
20: Φ←GetRandomNeighbor(j)
21: prend node ← drerend node

22: SendData(p, Φ)
23: else if drerend node ∈ FarF ieldDRT then
24: // Rendezvous node is my Far Field DRT:
25: j ←GetInterfaceIDfromFFDRT()
26: Φ←GetRandomNeighbor(j)
27: prend node ← drerend node

28: SendData(p, Φ)
29: else
30: // Stale route
31: BufferData(p)
32: ForwardRREQPacket(p)
33: end if
34: else
35: // Destination and Rendezvous definitely not known
36: BufferData(p)
37: ForwardRREQPacket(p)
38: end if
39: end if

Table 2 Comparison of Probability of Rendezvous vs. Velocity

Mobility Speeds: 10 m/s 20 m/s 30 m/s
After 1 sec 98.5% 96.9% 94.3%
After 4 sec 91.9% 81.9% 74.6%

to 1m and corresponding mobility speeds. For our paper, we only considered square

topologies.

Table 2 shows our results for probability of announcement/RREQ rendezvous for

various mobility speeds after waiting 1 and 4 seconds after announcement packets were

sent. As expected, the results showed decreasing, yet high, intersect probability with

higher mobility and longer wait time. This is because information becomes more dis-

persed over time and higher mobility. Our analysis gives only a partial view of reach

21

Algorithm 11 Data Delivery - Forward with Rendezvous Node

ForwardDataWithRendezvous(p)

1: if prend node = ID then
2: // We are the rendezvous node. Check if dest is in far field DRT
3: // (Whether dest is in neighbor list and near field DRT already checked)
4: prend node ← null
5: if pdest ∈ FarF ieldDRT then
6: j ←GetInterfaceIDfromFFDRT()
7: Φ←GetRandomNeighbor(j)
8: SendData(p, Φ)
9: end if

10: else
11: if pdest ∈ FarF ieldDRT then
12: // Destination in far field DRT
13: j ←GetInterfaceIDfromFFDRT()
14: Φ←GetRandomNeighbor(j)
15: SendData(p, Φ)
16: else if prend node ∈ NeighborList then
17: // Rendezvous node is my 1 hop neighbor:
18: SendData(p, next hop)
19: else if prend node ∈ NearF ieldDRT then
20: // Rendezvous node is my Near Field DRT:
21: j ←GetInterfaceIDfromNFDRT()
22: Φ←GetRandomNeighbor(j)
23: SendData(p, Φ)
24: else if prend node ∈ FarF ieldDRT then
25: // Destination is my Far Field DRT:
26: j ←GetInterfaceIDfromFFDRT()
27: Φ←GetRandomNeighbor(j)
28: SendData(p, Φ)
29: else
30: // Just keep forward in opposite direction
31: α← NumInterfaces
32: j ← (p→ Recv Int Id) j ← ((j + α/2)%α)
33: Φ←GetRandomNeighbor(j)
34: SendData(p, Φ)
35: end if
36: end if

Algorithm 12 Data Delivery - Forward without Rendezvous Node

ForwardDataNoRendezvous(p)

1: // (Whether dest is in neighbor list and near field DRT already checked)
2: if pdest ∈ FarF ieldDRT then
3: // Destination in far field DRT
4: j ←GetInterfaceIDfromFFDRT()
5: Φ←GetRandomNeighbor(j)
6: SendData(p, Φ)
7: else
8: // Just keep forward in opposite direction
9: α← NumInterfaces

10: j ← (p→ Recv Int Id) j ← ((j + α/2)%α)
11: Φ←GetRandomNeighbor(j)
12: SendData(p, Φ)
13: end if

22

R

X’

C’

Q’ D

G’

F’

H’

J’

E’X

Q

F

C

G
H

J

E

S
R

A

B

MORRP
Numerical Analysis

Fig. 9 MORRP reachability numerical analysis calculation

probability as actual data will still need to hit the rendezvous region and destination re-

gion for successful packet delivery in mobile environments. And although not complete

in describing the whole protocol, it gives a high-order view of the overall intersect be-

havior and shows that even with high mobility, the probability of finding a rendezvous

point is relatively high. In the actual protocol, not all nodes require this far-field op-

eration because some are close enough to the source to utilize the near-field DRT.

Additionally, RREQs are sent upon need and can be anywhere between the announce-

ment interval and node mobility velocity is not constant throughout the network. All

these factors merit additional simulations to fully understand the inner-workings of the

protocol which we describe in the following section.

5 Performance Evaluation

In this section, we provide performance evaluations of MORRP under various parame-

ters and against several proactive, reactive, and position-based routing protocols with

one omni-directional interface and several directional interfaces. The simulations were

performed using Network Simulator [22], with nodes using the standard IEEE 802.11

MAC with the antenna range set to 250m (NS2 default). Each node moves using the

random waypoint mobility model with a node pause time of 5 seconds in a 1300m x

1300m area.

The performance metrics we evaluated are packet delivery ratio, control packet over-

head, average path length, aggregate network goodput, end to end latency, and far-field

vs. near-field DRT usage. We examine these metrics under conditions of varying node

mobility speeds, decay factors, transmission rates, and network densities. All simula-

23

Table 3 Default Simulation Parameters

Parameter Values
Trans. Radius / # Interfaces 250m / 8 Directional Interfaces
Topology Boundaries 1300m x 1300m
of Nodes / Simulation Time 100 / 170s
Announcement Interval 4.0s
Mobility (m/s) RWP Model between 0m/s and 30m/s
Distance Decay Factor (Dd) 0.7 (fraction of bits dropped per hop)
Time Decay Factor (Dt) 0.3 (fraction of bits dropped per sec)
Time Decay Interval (Di) 0.5s
of BF Hash Funcs / BF Size 30 / 16000 bits
NF Threshold / FF Threshold 6 bits / 6 bits
Spread Decay Ratio (sratio) 0.5

tions were averaged over 3 runs of 5 different random topologies (total 15 trials). Table

3 outlines our default simulation parameters.

MORRP and ORRP were configured using n interfaces (divisible by 4) with each

interface having a beam-width of 360/n degrees and announcement and RREQ packet

TTL set to 10 hops. Announcement packets were sent every 4 seconds. We choose

30 hash functions and a bloom filter size of 16000 bits for simulations with MORRP

to ensure minimum overlap of bits with 100 or so nodes and employ no bloom filter

compression. The exploration of optimal hash function sizes to ensure minimal bit

collisions are beyond the scope of the paper and more information can be found in [21].

For reactive routing protocols like DSR and AODV which require no periodic up-

dates, the standard NS2 defaults were used. GPSR with GLS as the location service

utilized defaults as well. For OLSR, topology control update interval set to 4 seconds

to match ORRP and MORRP announcement intervals. For all simulations, a hello

interval of 2 seconds was used and MAC layer feedback employed for all the routing

protocols. A potential future extension is MORRP with routing metrics and link layer

feedback. Traffic patterns varied for each test and are described in each subsection.

Implementations and defaults for GPSR/GLS and OLSR can be found at [17] and [18]

respectively.

In order to explore whether MORRP and ORRP gains were merely from capacity

gains with directional antennas and multiple interfaces or actual design improvements,

we modified AODV and OLSR implementations to support multiple directional in-

terfaces in the same way as MORRP and ORRP. Since AODV and OLSR rely on

omni-directional broadcast to disseminate information, by sending out all interface di-

rections, one can simulate the behavior of AODV and OLSR broadcasts. Transmitting

data packets, however, require only one interface to be active at a time and thus frees

the medium and other interfaces for other nodes to use.

5.1 Evaluation of MORRP Parameters in Mobile Environments

5.1.1 Effect of Time and Distance Decay Factors

Sections 2.1 and 2.2 point out that knowing how many bits of the bloom filter to

“decay” (i.e. drop) per time interval and per hop will in many ways determine the key

metric in mobile environments: reachability. In this section we evaluate how the time

24

and distance decay factors (what fraction of bits are dropped) affect reachability and far

field DRT usage. The smaller the decay factor, the less fraction of the bits are decayed

per time interval for time decay and per hop for distance decay. In our simulations, we

fixed the default values given in Table 3 while varying the decay factors from 0.1 to

1.0. Figures 10 and 11 show our results for 100 nodes (average of 10 1-hop neighbors

per node) network density.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ea

ch
 P

ro
ba

bi
lit

y

Decay F actors (T ime or Distance)

Reach Probability vs. Decay Factors - 100 Nodes

Distance Decay - Max V elocity: 10m/s
Distance Decay - Max V elocity: 30m/s

T ime Decay - Max Node V elocity: 10m/s
T ime Decay - Max Node V elocity: 30m/s

Fig. 10 As time decay factor increases, reach probability drops due to confusing paths as old
information is not decayed adequately. As distance decay factor increases (more bits dropped
per hop), a plateau in reach occurs.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1F
ra

ct
io

n
of

 P
kt

s
R

ou
te

d
vi

a
F

ar
 F

ie
ld

Decay F actors (T ime or Distance)

Far Field DRT Usage vs. Decay Factors - 100 Nodes

Dist. Decay - Max Node V elocity: 10m/s
Dist. Decay - Max Node V elocity: 30m/s

T ime Decay - Max Node V elocity: 10m/s
T ime Decay - Max Node V elocity: 30m/s

Fig. 11 Increased dependence on Far-Field DRT happens when more bits are dropped every
time interval and distance.

25

Table 4 Comparison of Adhoc Routing Protocols

Type Requires Localization No Localization
Proactive – OLSR, ORRP, MORRP
Reactive GPSR/GLS DSR, AODV, ORRP, MORRP

As expected, for various degrees of mobility, decreasing the time decay factor (drop-

ping less bits per time interval) results in lower reach probability due to misinformation

and bit accumulation. On the opposite spectrum, having too high of a time decay fac-

tor, thereby dropping a high number of bits per time interval also leads to less reach

probability. This can be explained by the far-field DRT usage graph. As the time decay

factor is low, the majority of data packets will be utilizing the far-field DRT to find

a path because the near-field DRT coverage region will decay rather quickly. Because

far-field DRT information is updated less frequently, too much reliance on it can yield

inaccurate results. An optimal decay factor must be selected, therefore, to ensure high

delivery success and a fair usage of both far-field and near-field DRTs.

Our results in figure 10 show that there is a gradual increase in reach probability

when the distance decay factor goes from 0.1 to 0.6 and then plateau’s out. The low

reach probability when the distance decay is lower results from saturation of bits to

multiple interfaces resulting in confusing paths chosen. While the reach probability

plateau’s at a distance decay factor of 0.6, the far-field dependence graph in figure 11

shows that there is still a gradual shift from using near-field DRT to route information

at the source to far-field DRT dependence.

5.1.2 Effect of Threshold

Another interesting knob to adjust is the near-field and far-field bit threshold. As the

threshold increases, the amount of information a node has about neighbors farther away

decreases. It is expected that as the threshold for the near-field increases to greater

than or equal to the number of hash functions, each node will only have information

about itself. From our results, it was shown that when the threshold is low, there is a lot

more confusion about path selection because of bit collisions and slow time decay. This

results in poor path choices, low reachability, and greater dependence on the far-field

DRT. As threshold increases, it approaches a point where each node has information

about itself and its 1 hop neighbors (since 1 hop neighbors do not decay their node

own ID hash when sending their DRT) resulting in high reachability. Furthermore, it

was seen that reach probability peaks at roughly 6 bits which is roughly 20% of the

number of hash functions used.

5.2 Comparison of MORRP against AODV, GPSR/GLS, OLSR and ORRP

In this subsection, we evaluate MORRP against reactive protocols like AODV [11],

proactive protocols like OLSR [4], and position-based protocols like GPSR/GLS [3,19]

in terms of reach probability, average path length, control overhead, delivery success,

aggregate network goodput, and end-to-end delay under conditions of varying mobility

speeds, data rates, and network densities. Table 4 shows a comparison of the classifica-

tion of ad-hoc routing protocols measured, highlighting the need for node localization

26

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0 5 10 15 20 25 30A
ve

ra
ge

 P
at

h
Le

ng
th

 (

of
 H

op
s)

Maximum Node Velocity (m/s) - 1,000 Connections

Average Path Length vs. Max Velocity (m/s)
(vs. Traditional Routing Protocols)

AODV - Omnidirectional Antenna
OLSR - Omnidirectional Antenna

GPSR w/ GLS - Omnidirectional Antenna
MORRP - 8 Directional Interfaces

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

D
el

iv
er

y
S

uc
ce

ss
 F

ra
ct

io
n

Maximum Node V elocity (m/s) - 1,000 C onnections

Delivery Success vs. Max Velocity (m/s)
(200 Node - 2000m x 2000m Network)

AODV - Omnidirectional Antenna
OLS R - Omnidirectional Antenna

G P S R w/ G LS - Omnidirectional Antenna
OR R P - 8 Directional Interfaces

MOR R P - 8 Directional Interfaces

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5 10 15 20 25 30

D
el

iv
er

y
S

uc
ce

ss
 F

ra
ct

io
n

Maximum Node V elocity (m/s) - 1,000 C onnections

Delivery Success vs. Max Velocity (m/s)
(300 Node - 2000m x 2000m Network)

AODV - Omnidirectional Antenna
OLS R - Omnidirectional Antenna

G P S R w/ G LS - Omnidirectional Antenna
OR R P - 8 Directional Interfaces

MOR R P - 8 Directional Interfaces

Fig. 12 MORRP yields above 93% reachability (data delivery success) even in highly mobile
environments for medium-sized networks (1300m x 1300m) and about 87% reachability for
large-sized networks (2000m x 2000m) with moderate density.

and key differences. Default parameters for MORRP given in table 3 were used in all

scenarios unless otherwise stated. We focus heavily on reachability/delivery success in

all these scenarios because in mobile adhoc networks, reachability comes primary over

throughput, latency, etc. The reason is because our results show that for high mobil-

ity, even limited-flooding protocols like AODV and OLSR simply cannot deliver the

majority of the packets (low reachability).

5.2.1 Effect of Increased Velocity

In this subsection, we evaluate the effect of increasing velocity on traditional routing

protocols like AODV, GPSR/GLS, and OLSR and compare it to MORRP, ORRP, and

multi-interfaced versions of AODV and OLSR. Our initial simulations involve rela-

tively light load (1000 random 5 second connections). While protocols like GPSR/GLS

provide high reach under light load, as the load increases to 10,000 connections, we see

a significant drop in reachability. Figure 12 shows our results in comparing MORRP

to traditional routing protocols with one omni-directional antenna under varying node

and topology sizes.

It is clear that in conditions of high mobility with few connections, MORRP with

atleast 8 interfaces provides high reach probability (93% for 1300 × 1300m2 networks

and 87% for 2000 × 2000m2 networks) even under conditions of infrequent announce-

ments sent (4 second intervals). As maximum velocity increases, AODV and OLSR fail

because of stale routes. With high mobility, it becomes increasingly hard to maintain

end-to-end routes without increasing state dissemination rate or route requests. Both

options lead to network congestion.

GPSR with GLS performs rather well in all cases, providing high reach even with

increased mobility. Simply using GPSR with GLS (or a version modified to support

directional antennas), however, runs into several issues: 1) End-to-end packet latency

27

-2

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30

E
nd

 to
 E

nd
 D

el
ay

 (
se

c)

Maximum Node V elocity (m/s) - 1,000 C onnections

Data Packet Latency vs. Max Velocity (m/s)
(300 Node - 2000m x 2000m Network)

AODV - 8 Interfaces
OLS R - 8 Interfaces

G P S R w/ G LS - Omnidirectional Antenna
OR R P - 8 Directional Interfaces

MOR R P - 8 Directional Interfaces

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5 10 15 20 25 30

D
el

iv
er

y
S

uc
ce

ss
 F

ra
ct

io
n

Maximum Node V elocity (m/s) - 10,000 C onnections

Delivery Success vs. Max Velocity (m/s)
(vs. Traditional Routing Protocols)

AODV - Omnidirectional Antenna
OLS R - Omnidirectional Antenna

G P S R w/ G LS - Omnidirectional Antenna
MOR R P - 8 Directional Interfaces

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5 10 15 20 25 30

D
el

iv
er

y
S

uc
ce

ss
 F

ra
ct

io
n

Maximum Node V elocity (m/s) - 10,000 C onnections

Delivery Success vs. Max Velocity (m/s) (8 Interfaces)

AODV - 8 Interfaces
OLS R - 8 Interfaces
OR R P - 8 Interfaces

MOR R P - 8 Interfaces

Fig. 13 GPSR w/ GLS has much higher end-to-end latency than all the other routing proto-
cols including MORRP. Under load, all other routing protocols with omnidirectional antennas
fail. MORRP performs much better than traditional routing protocols modified with direc-
tional antennas.

with GPSR with GLS is fairly bad, reaching close to 3-4 seconds per packet (See

figure 13) and 2) GPSR/GLS requires node localization which we currently assume

is a given. Position information is often obtained through node localization protocols

which incur additional overheads and function poorly in sparse network environments

or additional hardware like GPS which require “sky” access.

To see where the multiple interfaces shine, we increase the load from 1,000 connec-

tions to 10,000 connections, each for 5 seconds. As figure 13 shows, under increased

load, protocols that utilize omnidirectional antennas saturate the medium and fail to

successfully deliver packets. It becomes important, therefore, to understand how much

of the gains from figure 13 results from more efficient medium reuse due to directional

interfaces vs. the gains coming from MORRP protocol design itself. We compare modi-

fied versions of AODV and OLSR to support multiple directional antennas with ORRP

and MORRP with the results shown in figure 13. The modified versions of AODV and

OLSR still broadcast (ie: send out all interfaces) when performing route requests or dis-

semination due to the protocol design and as such, we expect to see better performance

with MORRP.

AODV with 8 directional interfaces shows significant improvement in delivery suc-

cess vs. the traditional AODV due to the directional interfaces causing less interference

in data delivery. The primary gains come from utilizing multiple interfaces as AODV

is a reactive protocol and sends out route request packets on-demand. OLSR, on the

other hand, saw only gains vs. the single interface OLSR only under low mobility.

When the mobility increases to 30m/s, these gains from capacity almost fade. This

is due to OLSR’s proactive nature. The periodic rate of link-state exchange simply

cannot keep up with mobility speed and as a result, most packets are not successfully

transmitted due to stale information rather than medium saturation. ORRP delivery

success drops with increased mobility because it cannot maintain straight line next hop

28

paths without constant updates. MORRP performs consistently well, delivering over

93% of the packets even in highly mobile environments.

5.2.2 Effect of Increased Network Density

In this subsection, we evaluate how increasing network density affects reachability and

amount of control packet bytes networkwide. The reason why we focus on control packet

bytes rather than control packets is simply because MORRP sends bloom filters to its

immediate neighbors. Although bloom filters are relatively small in size, the incurred

overhead is larger than traditional packets. Figures 14 and 15 shows our results varying

number of nodes from 50 to 300 with each node having a maximum velocity of 30m/s.

2500 random source and destination pairs are chosen and 512KB CBR packets sent for

20 seconds at a rate of 2Kbps. For fair comparison, we only evaluate MORRP against

ORRP and the modified versions of AODV and OLSR to support multiple directional

interfaces.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300

D
el

iv
er

y
S

uc
ce

ss

Number of Nodes (1300m x 1300m T opology with T rans . R adius 250m)

Delivery Success vs. Number of Nodes (Max Node Velocity: 30m/s)

AODV - 8 Interfaces
OLS R - 8 Interfaces
OR R P - 8 Interfaces

MOR R P - 8 Interfaces

Fig. 14 MORRP scales well under increasing node density, providing over 90% delivery suc-
cess in most cases.

It can be seen that as the number of nodes increases, AODV with multiple in-

terfaces start dropping in reach due to its broadcast nature. OLSR fails because of

stale routes due to high mobility. As the density increases, however, OLSR performs

seemingly better because closer nodes are more within better reach. ORRP fails to

deliver packets because in highly mobile environments, straight line paths are hard to

maintain. MORRP delivers roughly 90% of the packets successfully.

It is interesting to note that MORRP seems to send out less control packets than

ORRP despite it needing to periodically send DRT update messages to all neighbors.

The reason for this is simple: In ORRP, RREQ packets travel in a line and a RREP

is generated only when this packet intersects with a path generated by an ORRP

announcement packet. With MORRP, however, RREQ packets stop being forwarded

once it intersects with a destination’s “field”. Because these “fields” are two or three

29

 0.1

 1

 10

 100

 50 100 150 200 250 300T
ot

 C
on

tr
ol

 P
kt

 M
B

 S
en

t (
Lo

g
S

ca
le

)

Number of Nodes (1300m x 1300m T opology with T rans . R adius 250m)

Total Control Pkt MB vs. Number of Nodes (Max Velocity: 30m/s)

AODV - 8 Interfaces
OLS R - 8 Interfaces
OR R P - 8 Interfaces

MOR R P - 8 Interfaces

Fig. 15 MORRP incurs low packet overhead even in high mobility.

hops large, MORRP RREQ packets traverse less hops than ORRP RREQ packets.

OLSR grows rapidly with network size because more nodes are periodically sending

out link-state information. AODV grows despite the constant number of connections

due to more nodes in the network forwarding RREQ and RREP packets.

5.2.3 Effect of Increased Data Rate

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16 18 20

A
gg

re
ga

te
 N

et
w

or
k

G
oo

dp
ut

 (
M

bp
s)

C B R R ate (K bps) - Max Node V elocity: 30m/s

Aggregate Network Goodput vs. All-to-All CBR Rate
(vs. Traditional Routing Protocols)

About 13x G oodput Increase

AODV - Omnidirectional Antenna
OLS R - Omnidirectional Antenna

G P S R w/ G LS - Omnidirectional Antenna
MOR R P - 8 Directional Interfaces

Fig. 16 MORRP achieves 10-14X more aggregate goodput compared to routing protocols
with omnidirectional antennas due to efficient medium reuse

30

Although in mobile environments, high reachability naturally leads to high aggre-

gate network goodput, it is important to quantify these gains. In this subsection, we

evaluate the effect of increased data rate on network goodput. To do so, we make all-

to-all connections simultaneously network-wide and send packets at a set data rate for

20 seconds. By slowly increasing the rate, we can measure the amount of data that

actually gets sent. We expect the capacity constraints will be mostly dependent on

medium usage. All nodes are moving at a uniformly distributed velocity with a max of

30m/s.

We first compare MORRP to AODV, OLSR, and GPSR/GLS to highlight the

gains from simply moving from omnidirectional antennas to directional antennas. Fig-

ure 16 shows our results. As expected, MORRP with 8 interfaces achieves much higher

goodput than all the other protocols (roughly 10-14X more than OLSR the closest

competitor).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10 12 14 16 18 20A
gg

re
ga

te
 N

et
w

or
k

G
oo

dp
ut

 (
M

bp
s)

C B R R ate (K bps) - Max Node V elocity: 30m/s

Aggregate Network Goodput vs. All-to-All CBR Rate (8 Interfaces)

About 15% G oodput Increase

AODV - 8 Interfaces
OLS R - 8 Interfaces
OR R P - 8 Interfaces

MOR R P - 8 Interfaces

Fig. 17 MORRP achieves 15-20% more aggregate goodput over protocols with 8 directional
interfaces because of use of directionality to limit flooding.

Comparing to AODV and OLSR with 8 directional interfaces and ORRP, MORRP

still performs almost 15-20% better than OLSR and ORRP. Again, ORRP fails because

it was never designed for mobility and maintenance of straight-line paths becomes

difficult in highly mobile environments. The gains from MORRP come from protocol

design. Much like the majority of previous work in using directional interfaces in layer

3 routing [7][14], the modified versions of OLSR and AODV simply adapt the protocol

to support directionality rather than leveraging the inherent properties of directionality

to route. Whereas OLSR and AODV even with multiple directional interfaces simply

“broadcast” out all intervals for topology control dissemination or route discovery,

MORRP utilizes local directionality to disseminate packets along lines to limit flooding.

Therefore, it is understandable to see large gains with MORRP over OLSR and AODV

with multiple interfaces.

31

5.2.4 Summary of Performance Evaluation

Below we summarize our findings in evaluating MORRP:

– MORRP yields above 93% reachability even in highly mobile environments for

medium-sized networks and 89% reach for large-sized networks with medium den-

sity.

– Routing using MORRP accounts for an almost 10-14x higher aggregate goodput

compared to AODV, OLSR and GPSR/GLS. These gains come primarily through

more efficient reuse of the medium under heavy load.

– MORRP yields 15-20% higher aggregate goodput compared to modified versions

of AODV and OLSR for 8 directional interfaces and also ORRP. These gains come

by using directionality constructively and scalably to overcome problems inherent

with directionality.

– End to end packet latency is very low under MORRP compared to AODV, OLSR,

and GPSR/GLS because of more efficient medium reuse.

– As node density increases, AODV, OLSR and GPSR/GLS data delivery success

drops significantly due to network saturation but does not affect MORRP much.

– MORRP sends less control packets than ORRP and much less than AODV, and

OLSR in highly mobile situations.

6 Conclusion

In this paper, we presented Mobile Orthogonal Rendezvous Routing Protocol (MORRP),

an unstructured, probabilistic, and highly mobility tolerant forwarding paradigm based

on directional communication methods and rendezvous abstractions. By utilizing di-

rectional routing tables (DRTs), a novel replacement for traditional routing tables,

information about nodes in a specific region and nodes along a straight line path is

maintained probabilistically. DRTs map interface directions to a probabilistic set-of-

IDs which are decayed and spread locally within a node based on time and local node

velocity and decayed by number of hops from the source. DRTs provide regions where

a node can be found in the near-field case and directions to send in the far-field case.

When a destination is outside of the near-field region, MORRP relies on taking

intersections of orthogonal lines originating from source and destination and forward-

ing packets from the source to rendezvous nodes which in turn hand them over to the

destination providing simplified routing. We have outlined several “knobs” associated

with MORRP and evaluated distance decay factor, time decay factor, and near-field

and far-field threshold under conditions of varying mobility. It can be seen that spread

decay affects networks that are sufficiently dense and has very little affect on sparse net-

works. Additionally, we compared MORRP against DSR, AODV, OLSR, GPSR/GLS

ORRP under varying conditions of mobility and node densities and found that MORRP

provides higher reach probability, average path selection, and has much lower control

packet overhead. In short, MORRP provides high connectivity even in highly mobile,

dense, and unstructured environments.

While we have only considered the base case of MORRP in square topologies with

random waypoint mobility, there are several directions for future work. First, it would

be interesting to see how MORRP fits into hybrid routing environments with networks

having a mixture of nodes with omnidirectional and directional communications. Addi-

tionally, it would be interesting to see how to incorporate routing metrics into MORRP

32

and DRTs to provide for even better path selection and obstacle avoidance. Another

area of consideration is a more detailed evaluation of MORRP under various topologies

and traffic patterns.

References

1. B. Cheng, M. Yuksel, S. Kalyanaraman, “Orthgonal Rendezvous Routing Protocol for Wire-
less Mesh Networks,” To appear in IEEE/ACM Transactions on Networking (ToN), June
2009.

2. H. Gossain, T. Joshi, C. De Morais Cordeiro, and Dharma P. Agrawal, “DRP: An Effi-
cient Directional Routing Protocol for Mobile Ad Hoc Networks,” IEEE Trans. Parallel and
Distributed Systems, vol. 17, no. 12, 2006, pp. 1439-1451.

3. B. Karp and H.T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Net-
works,” Proceedings of MOBICOM 2000.

4. Optimized Link State Routing Protocol RFC. http://www.ietf.org/rfc/rfc3626.txt
5. K. Chebrolu, B. Raman, and S. Sen, “Long-Distance 802.11b Links: Performance Measure-

ments and Experience”, Proceedings of MOBICOM 2006, Los Angeles, USA.
6. A. Nasipuri, J. Mandava, H. Manchala, R. Hiromoto, “On Demand Routing Using Direc-

tional Antennas in Mobile Ad Hoc Networks”, Proceedings of IEEE WCNC 2000.
7. R. R. Choudhury, N. Vaidya “Performance of Ad Hoc Routing using Directional Antennas”

Journal of Ad Hoc Networks - Elsevier Publishers, November, 2004.
8. U. Acer, S. Kalyanaraman, A. Abouzeid, “Weak State Routing for Large Scale Dynamic

Networks”, Proceedings of MOBICOM 2007, Sept 2007.
9. D. Britz, R. Miller, “Mesh Free Space Optical System: A method to Improve Broadband

Neighborhood Area Network backhaul”, Proceedings of IEEE LANMAN, Princeton, NJ,
June 2007.

10. D. Johnson, D. A. Maltz, J. Broch. DSR: The Dynamic Source Routing Protocol for
Multi-Hop Wireless Ad Hoc Networks. Ad Hoc Networking, Chapter 5, pp. 139-172, Addison-
Wesley, 2001.

11. C. Perkins and E. Royer. “Ad hoc On-Demand Distance Vector Routing.” Proceedings
of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, New Orleans,
LA, February 1999, pp. 90-100.

12. BBN Technologies. Hazy Sighted Link State (HSLS) Routing: A Scalable Link State Al-
gorithm, http://www.cuwireless.net/downloads/HSLS.pdf.

13. R. R. Choudhury and N. Vaidya. “Impact of Directional Antennas on Ad Hoc Routing”,
Proceedings of the Eighth International Conference on Personal Wireless Communication
(PWC), Venice, September 2003.

14. R. Ramanathan. “On the performance of ad hoc networks using beamforming antennas”,
Proceedings of ACM MOBIHOC, October 2001.

15. S. Yi, Y. Pei, and S. Kalyanaraman, “On the Capacity Improvement of Ad Hoc Wireless
Networks Using Directional Antennas,” Proceedings of ACM MOBIHOC, Pages 108-116,
Annapolis, MD, June 2003.

16. M. Yuksel, J. Akella, S. Kalyanaraman, and P. Dutta, “Free-Space-Optical Mobile Ad-
Hoc Networks: Auto-Configurable Building Blocks”, To appear in ACM/Springer Wireless
Networks, 2007.

17. HLS patch for ns-2.29. http://www.cn.uni-duesseldorf.de/staff/kiess/software/hls-ns2-
patch.

18. OLSR-UM Implementation for ns-2.29. http://masimum.dif.um.es/?Software:UM-OLSR
19. J. Li, J. Jannotti, D. De Couto, D. Karger, R. Morris, “A Scalable Location Service for

Geographic Ad Hoc Routing,” ACM Mobicom 2000, Boston, MA, pages 120-130.
20. A. Kumar, J. Xu, and E. Zegura, ”Efficient and Scalable Query Routing for Unstructured

Peer-to-Peer Networks,” in IEEE Infocom, 2005.
21. M. Mitzenmacher, ”Compressed bloom filters,” IEEE/ACM Transactions on Networking,

vol. 10, no 5, pp. 604-612, 2002.
22. The Network Simulator. ns-2. http://www.isi.edu/nsnam/ns.

